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ML 1.0: Predictive Machine Learning [1960 – ]

§ First-Generation “Predictive” ML: Developed over the last
60 years—since the early 1960s, and produced a bundle of
powerful (accurate & flexible) algorithms like svm, gbm,
random forest, deep neural net, etc.

§ Success story: Enormous, especially in tech and
eCommerce industry.

§ AutoML: Builds high-performance ML-algos by automating
away a lot of mundane tasks like learner selection, feature
engineering, and hyperparameter optimization.
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The Emerging Regulatory Environment

Faced with the profound changes that AI technologies
can produce, pressure for “more” and “tougher” regula-
tion is probably inevitable.

— 100-Year Study on AI, Stanford (2019)

§ Development ‰ Deployment: While substantial progress
has been made toward developing more powerful ML 1.0
algorithms, the widespread adoption of these technologies
currently facing regulatory roadblock, especially in
safety-critical areas that directly affect human lives.

§ Burning question: how to systematically build regulatory
compliant algorithms by balancing fairness, interpretability,
and accuracy in the best manner possible?



4/38



5/38

ML 2.0: Admissible Machine Learning [2021 – ]

AdmissibleML offers new statistical learning principles

and algorithmic risk-management tools that can guide a

ML-developer to quickly build better algorithms that are

less-biased, more-interpretable, and sufficiently accurate.

Executive Summary
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Application 1: Algorithmic Fairness

The Census Income Data. It is extracted from 1994 United
States Census Bureau database, which contains n “ 45, 222
records involving personal details on:

ynˆ1: 1pincome ą $50k/yrq

Snˆq: Sensitive vars;
␣

Age, Gender, Race, Marital Status
(

Xnˆp: 10 attributes;
␣

Education level, Occupation, . . . }

Goal: Predict whether a person makes $50k per year while
minimizing unfair discrimination based on protected classes.
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ML 1.0: Pure Prediction Algorithm

Step 1. Choose a ML algorithm.

Step 2. Train the ML classifier only on X (i.e, without sensitive
attributes)

MLpy „ Xq

Step 3. Deploy the most accurate ML0.
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Gradient Boosting Machine (GBM)

Figure: Shows relevance-index Rj . The top feature relationship
represents the respondent’s role in the family—i.e., whether the
earning member is husband, wife, child, or other relative. Avg. test
accuracy: 85.65% (on 15% test set, repeated 50 times).
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Is it Deployable?

§ Obviously, it shouldn’t be deployed without assessing
whether the model is admissible under discrimination laws
based on protected characteristics.

§ Achieving high predictive-accuracy is as important as
ensuring regulatory compliance and transparency.

§ So, how should we proceed now?
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Current Framework

Good news: Significant research efforts in the last 4-5 years
led to some concrete AI toolkits:

§ IBM’s Fairness 360 [developed in 2018]

§ Microsoft’s FairLearn [developed in 2020]

They provide two core facilities:

1. Fairness assessment through different metrics.

2. Different unfairness mitigation methods.
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Assessment Strategies: Limitations

Too many numbers with too little information. Dashboard full
of fairness metrics: IBM 360 Fairness tool currently produces
77 fairness related metrics!

1. The Troubling Part: These fairness measures are mutually
incompatible and cannot be satisfied simultaneously. How
to reconcile these large collections of self-contradictory
metrics to make a confident decision? Not clear.

2. Marginal assessment: These methods ask user to choose (i)
one single discrete sensitive variable (e.g., race, gender, or
marital status) and computes a series on numbers. Recall:
our Income dataset has 4 sensitive variables.

3. What happens if a sensitive feature is continuous (e.g., age)?
Not clear. What happens if S is multivariate: Not clear.
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Cataloging a huge library of inherently contradictory model
validation metrics is hardly going to help ML-engineers to
search for a deployable model. Instead of searching in a
dark, we need some other methodical & prudent strategy.

Note 1.

We need an “Explanatory” Risk Management (XRM)
framework that can provide explanation and insights into
what (are the key sources of bias) and how (to combat
unwanted bias) for accelerating the model-search.

Note 2.
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Mitigation Strategies: Limitations

Step 1. Choose one particular fairness metric from a big pool.

Step 2. Choose one of the following three strategies:

§ Pre-processing : Re-weights or re-labels the original data
to minimize the given fairness measure.

§ In-processing : Optimizes hyperparameters of a blackbox
ML by imposing the given fairness measure as constraint.

§ Post-processing : Controls the given (un)fairness metric by
artificially changing the classification thresholds for each
protected group.
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All 3 unfairness mitigation strategies carry serious legal
compliance risk: Because either they undertake (i) data
massaging/manipulation; or (ii) they use protected at-
tributes during model training or decision making.

Note 3.

What practitioners actually do? A top AI-practitioner:

“I ran 40,000 different random forest models with different
features and hyper-parameters to search a fair model.”

Non-constructive Approach: No wonder, this ad-hoc
random process often ends up being a wild-goose chase,
resulting in a spectacular waste of computation and time.

Note 4.
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ML 2.0: Infogram and Admissible Machine Learning

§ Theory-side: The paper lays out the core principles for
designing AdmissibleML which is grounded in fundamental
information-theoretic and nonparametric statistical ideas.

§ Utility-side: Provides concrete algorithmic tools to aid the
development of regulatory compliant fair and transparent
AI systems—essential for earning trust of customers/public.

Key Concepts and Tools

§ Infogram

§ L-Features

§ ALPHA-testing

§ AdmissibleML: COREtree, COREglm, FINEtree , FINEglm.
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InfoGram: Practice

Figure: Infogram maps variables in a two dimensional effectiveness vs.
safety diagram. It is an exploratory tool for risk-benefit analysis that
provides insights into ‘what and how’.
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Safety-Index: Definition and Interpretation

Definition. Define the safety-index for variable Xj as

Fj “ MI
`

Y,Xj | tS1, . . . , Squ
˘

, j “ 1, . . . , p.

Interpretation.

§ It quantifies how much extra information Xj carries for Y
that is not acquired through the sensitive variables S.

§ Variables with “small” F -values will be called inadmissible,
as they possess little or no informational value beyond their
use as a dummy for protected characteristics.

InfoGram is an acronym for information diagram, which is a
scatter plot of tpR1, F1q, . . . , pRp, Fpqu.
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§ The variable relationship is highly predictive, yet a proxy
for the sensitive attributes.

§ A dangerous consequence: Most unguided predictive ML
algorithms will include in their models, even though it is
quite unsafe.

§ Admissible ML models should avoid1 using variables like
relationship to reduce unwanted bias.

Without a formal automated method, it is a hopeless task
(for model developers and regulators) to identify these
innocent-looking hidden proxy variables for modern-day
large-scale problems.

Note 5.

1 At least should be assessed by experts to determine its appropriateness.
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Admissible ML: FINEtree

Figure: FINE = An Admissible ML-model that balances Fairness,
INterpretability, and Efficiency. Accuracy: 83.5%.
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Theory: Outline

The foundation of AdmissibleML relies on information-theoretic
principles and nonparametric statistical methods. The key ideas
and results are presented in Section 2 of my paper.

It has four connected parts:

§ Formulation

§ Interpretation

§ Estimation

§ Inference
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Information-theoretic Formulation

Notation.

§ Y P t1, . . . , ku is the response variable.

§ X “ pX1, . . . , Xpq: p-dimensional feature matrix

§ S “ pS1, . . . , Sqq: q-dimensional sensitive attributes.

Definition. Conditional mutual information (CMI) between Y
and X given S is defined as:

MIpY,X|Sq “

¡

y,x,s

log

ˆ

fY,X|Spy,x|sq

fY |Spy|sqfX|Spx|sq

˙

fY,X,Spy,x, sq dy dx ds.
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Usual Interpretation #1

Under conditional independence:

Y KK X | S

the following decomposition holds for all y,x, s

fY,X|Spy,x|sq “ fY |Spy|sqfX|Spx|sq.

CMI quantifies the conditional dependence: the average
deviation of the ratio

fY,X|Spy,x|sq

fY |Spy|sqfX|Spx|sq
,
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Property and Graphical Model

An imp property: CMI possesses the necessary and sufficient
condition as a measure of conditional independence

MIpY,X|Sq “ 0 if and only if Y KK X | S.

Conditional independence can be described graphically, where
each node is a random variable (or random vector).

NOTE: The edge between Y and X passes through the S.
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More Useful Interpretation #2

The conditional entropy HpY |Sq is defined as

HpY | Sq “

ż

s
HpY | S “ sq dFs,

which measures how much uncertainty remains in Y after
knowing S, on average.

Theorem 1. MIpY,X|Sq can be expressed as the difference
between two conditional-entropy statistics:

MIpY,X | Sq “ HpY | Sq ´ HpY | S,Xq (1)

Interpretation. This alternative representation of CMI (1)
allows us to interpret it from a new angle: MIpY,X|Sq measures
the net impact of X in reducing the uncertainty of Y , given S.
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Nonparametric Estimation: Theory

Theorem 2. Let Y be a discrete random variable taking values
1, . . . , k, and pX,Sq be a mixed pair of random vectors. Then
the conditional mutual information can be rewritten as

MIpY,X | Sq “ EX,S

”

KL
`

pY |X,S ∥ pY |S

˘

ı

, (2)

where Kullback-Leibler (KL) divergence from pY |X“x,S“s to
pY |S“s is defined as

KL
`

pY |X,S ∥ pY |S

˘

“
ÿ

y

pY |X,Spy|x, sq log

ˆ

pY |X,Spy|x, sq

pY |Spy|sq

˙

.

Interpretation #3. Eq. (2) ñ CMI measures how much
information is shared only between X and Y that is not
contained in S. This viewpoint is used throughout my paper.
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Nonparametric Estimation: Algorithm

Given: n i.i.d samples txi, yi, siu
n
i“1.

Theorem 2 immediately leads to the following estimator of CMI
that works for large(n, p, q) settings:

xMIpY,X | Sq “
1

n

n
ÿ

i“1

log
xPrpY “ yi|xi, siq

xPrpY “ yi|siq
. (3)

Algorithm. Choose a ML classifier (e.g., SVM, rf, gbm, deep
neural net, etc.) and train the following two models:

ML.trainy|x,s Ð ML0
`

Y „ rX,Ss
˘

ML.trainy|s Ð ML0
`

Y „ S
˘

to the conditional probability estimates of (3).
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Three Practical Benefits

Our style of nonparametric estimation of xMIpY,X | Sq comes
with some important practical benefits:

§ Flexibility: Requires neither the knowledge of the exact
parametric form of high-dimensional FX1,...,Xp nor the
knowledge of the conditional distribution of X | S

§ Applicability: The method can be safely used for mixed X
and S—i.e, any combination of discrete, continuous, or
even categorical variables.

§ Scalability: The procedure is scalable for high-dimensional
big datasets with large(n, p, q).
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InfoGram: Graphical Interpretation
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Figure: Fairness is not a yes/no concept, but a matter of degree,
which is quantified via safety-index—indicated by the varying edge
thicknesses between S and X. InfoGram provides the necessary
guardrails for constructing algos that can retain as much predictive
accuracy as possible, while defending against unforeseen biases.
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Application 2: Digital Marketing Campaign Data

Figure: Goal is to develop an AI tool for automatic and fair digital
marketing campaign that will maximize the targeting effectiveness of
the ad campaign while minimizing the harmful effects on protected
groups. S “ tage, zip codeu and p “ 10 additional features.
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Figure: Infogram runs a ‘combing operation’ to distill down a large,
complex problem to its core that holds the bulk of the “admissible
information.” The useful information is mostly concentrated into two
variables—Income and CCAvg, as seen in the scatter diagram; the
color blue and red indicate two different classes.
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Customer Targeting using AdmissibleML: FINEglm

‚ Extracting a simple model: We train a logistic regression
model based on the two admissible features, leading to the
following model:

logit tµpxqu “ ´6.13 ` .04 Income ` .06 CCAvg,

where µpxq “ PrpY “ 1|X “ xq. This simple model achieves
91% accuracy. It provides a clear understanding of the ‘core’
factors that are driving the model’s recommendation.

‚ Infogram-assisted ML: An efficient, interpretable, and
equitable algorithmic recommendation system—which ensures
that we are making ‘responsible’ decisions using such algorithm.
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Application 3: Algorithmic Interpretability

Breast Cancer Wisconsin Data. It contains n “ 569
malignant and benign tumor cell samples. The task is to build
an accurate ML classifier based on p “ 31 features extracted
from cell nuclei images.

ML 1.0. Gbm and random forest attain accuracy in the range
of 95 ´ 97%. Quite impressive!

Is it deployable? Will an oncologist or hospital use this
AI-technology to make decisions about their patients? Probably
not since the core algorithmic “logic” is incomprehensible to
medical experts. In Science why is as important as what.

Revised goal: ML 2.0. We need to design an admissible
(interpretable and accurate) learning algorithm.
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Infogram

Figure: L-features: The highlighted L-shaped area contains features
that are either irrelevant or redundant. Predictive Features ‰ CoreSet
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Theory

‚ Identifying CoreSet is a much more difficult undertaking than
merely selecting the most predictive ones.

‚ To enable refined characterization of the vars, we’ve to add
more dimension to the classical ML feature importance tools.

Definition. Net-predictive information (NPI) of a feature Xj

given all the rest of the variables X´j “ tX1, . . . , XpuztXju is
defined in terms of conditional mutual information:

Cj “ MIpY,Xj | X´jq, for j “ 1, . . . , p.

‚ The joint plot of tpC1, R1q, . . . , pCp, Rpqu aims to discover the
core variables that are driving the outcome.
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CORE scatter plot

Figure: Reveals where the crux of the information is hidden and how
they separate the malignant and benign tumor cells.
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Admissible ML: COREglm

The simplest possible model that one could build is a logistic
regression based on those admissible “core” features.

The output of glm() R-function:

This infogram-guided 3-variable simple model turns out to be
surprisingly accurate 96.50%—as accurate as complex black-box
ML methods, yet highly transparent and interpretable.
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Final Remarks

§ ML 1.0: PredictiveML culture, where the expectation from a
Stat-model is to produce the most accurate prediction.

§ ML 2.0: AdmissibleML, where the expectation from a Stat
model is to aid understanding and safe decision-making.

§ ML 1.0: Long history since 1960s: knn, kernel methods,
CART, random forest, GBM, and recent deep learning.

§ ML 2.0: Going through its infancy; Slow progress—designing
statistical mechanism for ‘Responsible AI’ is much
HARDER than developing another ML 1.0 method.

§ My claim: The next decade will see rapid progress in
fundamental ideas and related tools required to establish a
strong foundation for ML 2.0. But this will need adequate
support and funding from Government & Industry.


