
From data to constraints
S. Mukhopadhyay, E. Parzen, and S. N. Lahiri 

 
Citation: AIP Conference Proceedings 1443, 32 (2012); doi: 10.1063/1.3703617 
View online: http://dx.doi.org/10.1063/1.3703617 
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1443?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Instabilities in dark coupled models and constraints from cosmological data 
AIP Conf. Proc. 1241, 1016 (2010); 10.1063/1.3462595 
 
Reconciling Solar Interior Models and Helioseismological Data: Constraints on the Neon Content of the Sun
from Nearby B Stars 
AIP Conf. Proc. 948, 225 (2007); 10.1063/1.2818975 
 
Constraints on ocean internal wave spectra from longrange acoustic transmission data 
J. Acoust. Soc. Am. 103, 2789 (1998); 10.1121/1.422293 
 
Gamma-Ray burst redshift constraints from BATSE spectral data 
AIP Conf. Proc. 384, 482 (1996); 10.1063/1.51708 
 
The black hole mass in Xray Nova Muscae: Constraint from SIGMA annihilation line data 
AIP Conf. Proc. 280, 423 (1993); 10.1063/1.44312 

 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.247.166.234 On: Sat, 05 Jul 2014 15:34:39

http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=S.+Mukhopadhyay&option1=author
http://scitation.aip.org/search?value1=E.+Parzen&option1=author
http://scitation.aip.org/search?value1=S.+N.+Lahiri&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.3703617
http://scitation.aip.org/content/aip/proceeding/aipcp/1443?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3462595?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2818975?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2818975?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/103/5/10.1121/1.422293?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.51708?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.44312?ver=pdfcov


From Data To Constraints
S.Mukhopadhyay, E.Parzen and S.N.Lahiri

Texas A&M University, Department of Statistics

Abstract. Jaynes’ Maximum Entropy (MaxEnt) inference starts with the assumption that we have
a set of known constraints over the distribution. In statistical physics, we have a good intuition about
the conserved macroscopic variables. It should not be surprising that in a real world applications, we
have no idea about which coordinates to use for specifying the state of the system. In other words,
we only observe empirical data and we have to take a decision on the constraints from the data. In
an effort to circumvent this limitation, we propose a nonparametric quantile based method to extract
relevant and significant facts (sufficient statistics) for the maximum entropy exponential model.

Keywords: Maximum entropy, mid-rank transformations, exponential model, quantile function,
nonparametric Entropy estimation.
PACS: 02.50.cW , 02.50.tT.

INTRODUCTION

One of the profound questions of stochastic modeling is “What comes first - a Paramet-
ric Model or Sufficient Statistics ?”. We propose the following philosophy of modeling
which goes from measurement to parameter through sufficient statistics. MaxEnt is such
a modeling framework where we can start modeling by first specifying the appropriate
sufficient statistics in terms of the constraints and then performing nonparametric Score
test to finally arrive at the parametric model. But unfortunately Maximum entropy prin-
ciple is silent on the role of finding the proper constraints from data. The aim of this
paper is to introduce a unified framework for answering (i) How to derive constraints
from measurements? and (ii) How many of them to use ! Note that the distribution de-
rived using the MaxEnt principle assumes that we have a proper set of constraints that
can explain the phenomena under study. But in practice, we rarely have this situation and
we have to take a decision about the proper choice of constraints. In this paper we intro-
duce a novel way of building nonparametric robust score functions (sufficient statistics)
and describe a goodness of fit framework using entropy statistics for selecting proper
number of constraints. We believe that, this novel systematic approach for inference ,
will help the maximum entropy to go beyond the conventional “exploratory phase” and
become an objective inferential paradigm for practitioners. We demonstrate the steps for
efficient representation, processing and data analysis using microarray gene expression
data.

MAXENT AND NONPARAMETRIC STATISTICS

Maximum entropy is a probability modeling principle which converts a nonparametric
problem into a parametric one by putting the entropy criteria under suitable constraints.

Bayesian Inference and Maximum Entropy Methods in Science and Engineering
AIP Conf. Proc. 1443, 32-39 (2012); doi: 10.1063/1.3703617
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Exponential Model and Maximum Entropy

Let X be a continuous random variable with density f , and our aim is to find the
probability law or the distribution of X on the basis of a random sample X1,X2, . . .Xn
in a fully nonparametric way. One elegant solution for this problem is the Maximum
Entropy which has it’s root in Thermodynamics. Rather than directly dealing with the
raw data, it starts with few known macroscopic summary statistics (sufficient statistics)
of the empirical data as form of constraints and then maximize the entropy (defined as,
H( f ) =

∫
∞

−∞
− log f (x) f (x) dx ) of X to find the distribution uniquely. In general, let

S1(X),S2(X), . . . ,Sm(X) be the sufficient statistics and we want to find the distribution
for which we have,

max
f

H( f ) subject to E f [Sk(X) ] = n−1
n

∑
i=1

Sk(Xi), for k = 1,2, . . . ,m. (1)

This characterizes the density f̂ (x) = Z−1 exp[∑m
k=1 θ̂ j Sk(x) ] which belongs to the

exponential family.

Note 1. The MaxEnt distribution heavily depends on the form of the score functions
Sk(X) and the number of such score function, i.e, m.

Note 2. There exists standard procedure to find sufficient statistics for specified expo-
nential family models. For example, if we assume the underlying law is Gaussian then
it is enough to summarize the data using S1(X) = X and S2(X) = X2 and perform para-
metric score test to decide how many of them we need. The point worth emphasizing at
this point is that, in MaxEnt nonparametric density estimation, we face the challenging
inverse problem of designing basis functions (possibly non-linear) from the data without
characterizing the underlying distribution.

The rest of this article is devoted to building a unified theoretical framework and
algorithm to answer how to pick the moment constraints and how many of them we
should pick ?, thus widening the scope of MaxEnt.

Note 3. One of the major successes of our proposed methodology is its simplicity
and generality. We can incorporate any definition of entropy, for example

∫
f log f or∫

log f into our analysis (yields respectively two popular nonparametric likelihoods ,
MaxEnt and Empirical likelihood), broadening the applicability and importance of our
methodology.

Unified Methodology using Quantile Technology

In this section we introduce the necessary concepts on quantile based machinery
to design the score function, initiated in Parzen (1979, 1983, 1991, 2004, 2009) and
latter we show how to build a nonparametric goodness of fit measure for selecting the
appropriate number of these score functions.
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Mid-Quantile Transformation

One of the key intermediate step for building the sufficient statistics is mid-rank
transformation, which plays an unifying role in non-parametric data analysis. For a
discrete random variable with probability mass function (pmf) p(x) = Pr(X = x) and
cumulative distribution function (cdf) F(x), the Mid-distribution function, defined as

Fmid(x) = F(x)− .5 p(x), x ∈ R. (2)

Our data analysis starts with transforming the raw data x1,x2, . . .xn to u1,u2, . . . ,un,
where Fmid(xi) = ui. The elegant formula for the mean and variance of W = Fmid(X)
is given by E(W ) = .5 and Var(W ) = σmid = 1/12 [1− E(p2(X))] (Parzen, 2004).
Our whole framework depends on the quantile function which traditionally defined
as Q(u) = inft{F(t) ≥ u}, where F(x) is the distribution function. But this definition
face roadblock for discrete/grouped data. The primary reason for introducing the mid-
distribution function is to unify the analysis of continuous and discrete data (with or
with out ties). To understand further the role played by mid-distribution function, let
us assume we are having data from some underlying absolutely continuous distribution
F . Our job then boils down to estimating the underlying unknown continuous density
from observed discrete finite sample by turning the MaxEnt crank. Mid-distribution
transformation (contrary to F(x)) improves the accuracy of approximation of discrete
random variable by continuous random variable as the inversion formula of a distribution
function from characteristic functions actually holds for mid-distributions ( at all x, not
just x a continuity point of F).

Building Score Functions

Novelty of our approach is in the construction of the basis functions. In contrast to
the standard practice of taking the basis as powers of x, here we use orthonormal score
functions based on ranks through mid-distribution transform. We define orthonormal
score functions as

S j(u) = L j

[
F̃mid( Q̃(u))

]
for j = 1,2, . . . ,m. (3)

Here L1,L2, . . . ,Lm are Legendre Polynomials on [0,1] and the˜signifies the empirical
estimate of the population version. In stead of Legendre Polynomials one can choose
any orthogonal polynomials like cosine or Hermite polynomials. The choice solely case
specific; for example Legendre polynomials turns out to be very useful for building
score functions (sufficient statistics) in the case of pattern classification problems as we
will demonstrate in the next section. This approach of constructing the score functions
has the following added advantages : (i) robust; (ii) works for both continuous, discrete
data ; (iii) bounded score functions avoids the problems with non-integrable densities
in the exponential model and lastly, (iv) the use of orthogonal polynomials for the basis
significantly improves the accuracy and stability the MaxEnt algorithm.
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Application to Probabilistic Classification

Here we will show how to apply the theoretical concepts of previous section to
classification and variable selection. Consider the problem of classifying the patients
into two group sick (Y = 1) and healthy (Y = 0) on the basis of p gene expression values
X1,X2, . . .Xp. Let us denote F(x|Y = 1) = F(x) and F(x|Y = 0) = G(x),x ∈R. Let H(x)
denote the polled cdf, given be H(x) = π F(x)+ (1− π)G(x), where π = Pr(Y = 1),
proportion of sick people in the population. Typically we have p≈ 5000 in this type of
classification setup, involving microarray gene expressions. So the first challenging task
is to reduce the number of variables and our specially designed score functions help to
achieve the goal in the following way. For each variable Xk, we have the following result,

Theorem 1 (Representation of Wilcoxon Statistics). Wilcoxon rank sum statistics can
be represented by Wil (linearly equivallent version of it),

Wil(Xk) = E
[

S1( H̃mid(Xk)) |Y = 1
]
.

For proof see Mukhopadhyay et al. 2011. Theorem 1 indicate the interpretation of
Wilcoxon statistics as < Y, S1(uk) >, where S1 is specially designed according to Eq [3]
and uk = H̃mid(xk). This motivates us to propose a nonlinear variable selection measure

Ck =
m

∑
j=1

< Y, S j(uk) >
2 for k = 1,2, . . . , p. (4)

Using this importance score we can select the discriminative variables and thus reduce
the complexity of the model. This demonstrate the dual role played by the score func-
tions S1,S2, . . . ,Sm for (i) creating appropriate summary statistics (ii) utilizing those for
nonparametric robust variable selection. In the following section we will discuss the
issue “How to choose m, the number of basis function” for a variable, developing a
completely nonparametric goodness of fit measure.

Nonparametric Estimation of Kullback-Liebler Information

A well known measure of similarity between statistical models is Kullback-Liebler
(KL) information number that can be expressed in terms of comparison density d(u) =
f (H−1(u))/h(H−1(u)), 0 < u < 1 as

I(H : F) =

∞∫
−∞

log [h(x)/ f (x)]h(x) dx.

= −
1∫

0

log
[

f (H−1(u))/h(H−1(u))
]

du = −
1∫

0

logd(u) du, 0 < u < 1,(5)

where last line follows from the substitution x = H−1(u). The reason to call it a density
due to the fact that

∫ 1
0 d(u) du = 1. Thus to estimate the KL number we have to estimate
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the comparison density of the corresponding variable. Here we will use the previously
designed score functions to build the exponential density given by,

d̂(u;θ1, . . .θm) = Z−1
m exp[

m

∑
k=1

θ̂k S j(u) ], 0 < u < 1. (6)

Combining Eq. (4) and (5) immediately gives the following important Corollary.

Corollary 1. Relation of Entropy number and log Partition function of the fitted expo-
nential model

Îm(H : F) = −
1∫

0

log d̂(u;θ1, . . .θm) du = logZm. (7)

It gives a clear strategy for model selection comparing the nonparametric estimates of
information numbers Î1, . . . , Îm. For MaxEnt models (Eq. 6) we just need to compare the
log partition numbers of various models to find the best yet simple model that fits the
data.

Note 4. Neyman (1937) → Akaike (1973) → Parzen (1983)
Akaike Information Criteria (AIC) (Akaike 1973) is an asymptotically unbiased

estimator of the expected KL information. In our setup we directly estimated non-
parametrically the KL information for all the completing models and selected the
one having minimum value (see Fig.3). The Kth model class, Mk is characterized
by h(x) = f (x)

[
Z−1

k exp[∑k
i=1 θiSi(x) ]

]
, which is famously known as Neyman model

(Neyman 1937). Which says that the pooled density is the product of density under
class 1 and a exponential ‘modification factor’. We are interested to find what is the
best k using KL distance. The trick is to express the KL information in the quantile
domain (replacing X = Q(X ;H)) as a functional of comparison density (Parzen 1983),
represented by Eq. 7. Our treatment thus unifies exponential smooth test, information
theoretic approach and nonparametric quantile domain data analysis.

Real Data Example

In this section we will illustrate our methodology using Colon cancer microarray data
(Alon et al.1999), consists of 2000 gene expressions (number of variables) measured
in 62 samples (22 normal and 40 tissue samples). An important intermediate step to
build efficient probabilistic classifier for medical decision making is variable selection,
which we accomplish through our detector introduced in Eq (4) utilizing our specially
designed score functions. First we create the score function using our recipe (see Eq 3),
as shown in Figure 1. Figure 2. shows the ranked ordering of the variables according to
their importance for classification. There is a significant gap after variable number 8, as
shown in Figure 4b, which drastically reduce the original dimension of the problem.

Utilizing the proper number of score functions (using Corollary 1) , Figure 3 present
the corresponding MaxEnt estimates of comparison density which plays a fundamental
role in classification (See Parzen et al. 2011).
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FIGURE 1. The shape of first four orthogonal mid-distribution score functions.

FIGURE 2. Ranking the variables according to their discriminative information using the measure
introduced in Eq 4. Here we have used using m = 4 to generate the rankings. Fig. 4b, clearly separates the
interesting variables from the the rest..
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FIGURE 3. MaxEnt Comparison Density Estimates.

DISCUSSION

This paper lays the groundwork for building relevant constraints from data, in a unified
manner through modern nonparametric methods and thus, takes care of the issues of
model uncertainty and model fidelity. The key idea is to estimate the exponential model
that uses a novel construction of orthogonal basis functions from the Fmid-transformed
values which gives the method extra robustness. One more pleasing aspect of our
method is that, it unifies the theory for discrete and continuous data (Parzen, 1991).
Our proposed method uses the information theoretic inference in conjunction with
quantile based approach to describe a unified approach which uses optimization and ap-
proximation to develop methods which encompasses nonparametric, maximum entropy,
estimation, testing parametric hypothesis and goodness of fit for model selection.
Although we have only illustrated our method for the classification setup, several
interesting features are apparent. Our method opens up the possibility to generate useful
features in terms of score functions for conditional or discriminative probabilistic (ex-
ponential family distribution) models like logistic regression (Mukhopadhyay, 2011),
conditional random field etc.
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