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Abstract
This paper is about two things: (i) Charles Sanders Peirce (1837–1914)—an icono-
clastic philosopher and polymath who is among the greatest of American minds. 
(ii) Abductive inference—a term coined by C. S. Peirce, which he defined as “the 
process of forming explanatory hypotheses. It is the only logical operation which 
introduces any new idea.”
1. Abductive inference and quantitative economics. Abductive inference plays a fun-
damental role in empirical scientific research as a tool for discovery and data analy-
sis. Heckman and Singer (2017) strongly advocated “Economists should abduct.” 
Arnold Zellner (2007) stressed that “much greater emphasis on reductive [abduc-
tive] inference in teaching econometrics, statistics, and economics would be desir-
able.” But currently, there are no established theory or practical tools that can allow 
an empirical analyst to abduct. This paper attempts to fill this gap by introducing 
new principles and concrete procedures to the Economics and Statistics community. 
I termed the proposed approach as Abductive Inference Machine (AIM).
2. The historical Peirce’s experiment. In 1872, Peirce conducted a series of experi-
ments to determine the distribution of response times to an auditory stimulus, which 
is widely regarded as one of the most significant statistical investigations in the his-
tory of nineteenth-century American mathematical research (Stigler in Ann Stat 
239–265, 1978). On the 150th anniversary of this historical experiment, we look 
back at the Peircean-style abductive inference through a modern statistical lens. 
Using Peirce’s data, it is shown how empirical analysts can abduct in a systematic 
and automated manner using AIM.
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Introduction

Charles Sanders Peirce (1839–1914), America’s greatest philosopher of science, was 
also a brilliant statistician and experimental scientist. For 32 years, from 1859 until 
1891, he worked for the United States Coast and Geodetic Survey.1 During this time, 
he developed an unfailing passion for experimental research. He was deeply involved 
in developing theoretical and practical methods for acquiring high-precision scien-
tific measurements, which ultimately earned him an international reputation as an 
expert in ‘measurement error’ in physics. Robert Crease (2009), a philosopher and 
historian of science, noted: ‘His [Peirce’s] work helped remove American metrology 
from under the British shadow and usher in an American tradition.’

1872 Experimental Data. In 1872, he conducted a series of famous experiments 
to determine the distribution of response times to an auditory stimulus. He meas-
ured the time that elapsed between the making of a sharp sound and the record of 
reception of the sound by an observer, employing a Hipp chronoscope (some kind 
of sophisticated clock). Figure 1 shows the dataset, which consists of roughly 500 
measurements (recorded in nearest milliseconds) each day for k = 24 different 
days.2. Note that the first-day observations are systematically different from others 
(also called systematic bias), and the inconsistency was due to the lack of experience 
of the observer, which was corrected on the next day. The next 23 days show much 
more consistent (comparable) measurements.

Gauss’ Law of Error

What observation has to teach us is [density] function, not a mere number.
— C. S. Peirce (1873)

Deciphering the Law of Errors. Peirce’s actual motivation for doing the experiment 
was to study the probabilistic laws of fluctuations (also called errors) in the measure-
ments and to investigate how response time distributions differ from the standard 
Gauss’ law.

Nineteenth-century statistical learning. Peirce (1873) presented a detailed 
empirical investigation of the reaction-time densities for each day. He was driven 
by two goals: to understand the shape of the reaction time densities and to compare 
them with the expected Gaussian distribution. His approach had a remarkably mod-
ern conceptual basis: first, he developed smooth kernel density-type probability den-
sity estimates to understand the shape of error distributions3; second, he performed 
a goodness-of-fit (GOF) type assessment through visual comparison between the 

1 U.S. Coast and Geodetic Survey was established on February 10, 1807, by President Thomas Jefferson. 
It was the nation’s first civilian scientific agency.
2 For further details on the experimental setup and the full dataset, consult the online Peirce Edition 
Project: vol 3, p. 133–160 of the chronological edition (Peirce 2009). It’s also available in the R-package 
quantreg
3 Peirce made a pioneering contribution to American statistics by developing the concepts that underpin 
nonparametric density estimation.
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shape of Gaussian distribution and the nonparametrically estimated densities,4 and 
concluded that the reaction-time distributions ‘differed very little from’ the expected 
normal probability law.5

Twentieth-century statistical learning. Almost sixty years later, the same dataset 
was reanalyzed by Wilson and Hilferty (1929), and they came to a very different conclu-
sion. Wilson and Hilferty performed a battery of tests to verify the appropriateness of the 
normal distribution. For each series of measurements, they computed 23 statistics (e.g., 
mean, standard deviation, skewness, kurtosis, interquartile range, etc.) to justify substan-
tial departures from Gaussianity. Interestingly, without any formal statistical test, sim-
ply by carefully looking at the boxplots in Fig. 1, we can see the presence of significant 
skewness (the median cuts the boxes into two unequal pieces), heavy-tailedness (long 
whiskers relative to the box length), and ample outlying observations—which is good 
enough to suspect the adequacy of Gaussian distribution as a model for the data.

Remark 1 The non-Gaussian nature of the error distribution of scientific measure-
ments is hardly surprising6— in fact, it is the norm, not the exception (Bailey 2017), 

4 However, at that time no theory of GOF was available. It took 30 more years for an English mathemati-
cian, Karl Pearson, to make the breakthrough contribution in developing the formal language of the GOF.
5 The term “normal distribution” was coined by Peirce.
6 Even Wilson and Hilferty (1929) noted the same: ‘according to our previous experience such long 
series of observations generally reveal marked departures from the normal law.’

Fig. 1  First look at Peirce’s auditory response data. The x-axis denotes 24 different days of experiments 
and the y-axis displays the data of individual experiment as boxplot
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which arises primarily because it is hard to control all the factors of a complex 
measurement process. But what is startling is that even Peirce’s experiment, a sim-
ple investigation of recording response times with the same instrument by the same 
person under more or less similar conditions, can produce so much heterogeneity.

‘Does statistics help in the search for an alternative hypothesis? There is no 
codified statistical methodology for this purpose. Text books on statistics do 
not discuss either in general terms or through examples how to elicit clues 
from data to formulate an alternative hypothesis or theory when a given 
hypothesis is rejected.’
— C. R. Rao (2001)

Revised Goal: From Testing to Discovery. Confirmatory analysis through hypoth-
esis testing provides investigators absolutely no clues on what might actually be 
going on.7 Simply rejecting a hypothesis—saying that it is non-Gaussian—does not 
add any new insight into the underlying laws of error. Thus, our focus will be on 
developing a data analysis technique that can identify the most questionable aspects 
of the existing model and can also provide concrete recommendations on how to 
rectify those deficiencies in order to build a better and more realistic model for the 
measurement uncertainties.

The Problem of Surprise

It is not enough to, look for what we anticipate. The greatest gains from data 
come from surprises. — JohnTukey (1972)

Modeling the Surprise. All empirical laws are approximations of reality—some-
times good, sometimes bad. We will be fooling ourselves if we think there is a single 
best model that fits Peirce’s experimental data. Any statistical model, irrespective of 
how sophisticated it is, should be ready to be surprised by data. The goal of empiri-
cal modeling is to develop a general strategy for describing how a model should 
react and adapt itself to reduce the surprise.

Without surprise, there is no discovery. The ‘process’ of discovering new knowl-
edge from data starts by answering the following questions: Is there anything sur-
prising in the data? If so, what makes it surprising? How should the current model 
react to the surprise? How can it modify itself to rationalize the empirical surprise? 
To develop a model and principle for statistical discovery, we need to first address 
these fundamental data modeling questions. In subsequent sections, we develop one 
such general theory.

Basic notations used throughout the paper: X is a continuous random vari-
able with cdf F(x), pdf f(x). The quantile function is given by Q(u) = F−1(u) . 
Expectation with respect to the initial working model F0(x) is abbreviated as 

7 An average statistician uses data to confirm or reject a particular theory/model. A competent statisti-
cian uses data to sharpen their theory/model.
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�0(�(X)) ∶= ∫ � dF0 , and expectation with respect to the empirical F̃ is simply 
written as �̃(�(X)) ∶= ∫ � dF̃ . The inner product of two functions �1 and �2 in 
L2(dF0) will be denoted by ⟨�1,�2⟩F0

∶= ∫ �1�2 dF0.

A Model for Empirical Discovery

There is no established practice for dealing with surprise, even though sur-
prise is an everyday occurrence. Is there a best way to respond to empirical 
surprises?
— Heckman and Singer (2017)

A Dyadic Meta‑Model

Science is a “self-corrective” enterprise that seeks new knowledge by refining the 
known.8 The same is true for statistical modeling: it explores and discovers unknown 
patterns by smartly utilizing the known (expected) model. In the following, we for-
malize this general principle.

Definition 1 (A Dyadic Meta-Model) X be a continuous random variable with true 
unknown density f(x). Let f0(x) represents a possibly misspecified predesignated 
working model for X, whose support includes the support of f(x). Then the following 
density decomposition formula holds:

where the d(u;F0,F) is defined as

which is called ‘comparison density’ because it compares the initial model-0 f0(x) 
with the true f(x) and it integrates to one:

To simplify the notation, d(F0(x);F0,F) will be abbreviated as d0(x) . One can view 
(1) as a “meta-model”—a model comprising two sub-models that blends existing 
imprecise knowledge f0(x) with new empirical knowledge d0(x) to provide us com-
plete picture of the uncertainty.

(1)f (x) = f0(x) d
(
F0(x);F0,F

)
,

(2)d(u;F0,F) =
f (F−1

0
(u))

f0(F
−1
0
(u))

, 0 < u < 1,

∫
1

0

d(u;F0,F) du = ∫x

d(F0(x);F0,F) dF0(x) = ∫x

(
f (x)∕f0(x)

)
dF0(x) = 1.

8 According to Peirce, every branch of scientific inquiry exhibits “the vital power of self-correction” that 
permits us to make progress and grow our knowledge; see, Burch and Parker (2022).



 Journal of Quantitative Economics

1 3

The above density representation formula can be interpreted from many different 
angles:

1. Model-Editing Tool. The dyadic model provides a general statistical mecha-
nism for designing a “better” model by editing or sharpening the existing version. 
For that reason, we call d the density-sharpening function (DSF). Next section pre-
sents how to learn DSF from data. The d-modulated repaired f0-density in Eq. (1) 
will be referred to d-sharp f0.

2. Surprisal Function. The process of data-driven discovery starts with a sur-
prise—a deviation between the data and the expected model. The DSF d(u;F0,F) 
gets activated only when model-0 encounters surprise, and its shape encodes the 
nature of surprise. When there is no surprise, d(u;F0,F) takes the shape of a ‘flat’ 
uniform density.

Surprise to information gain: It is not enough to simply detect an empirical sur-
prise. For statistical learning, it is critical to know: What information can we gain 
from the observed surprise? And how can we use that information to revise our ini-
tial model of reality? The density-sharpening function d(u;F0,F) provides a pathway 
from surprise to information gain that bridges the gap between the initial belief and 
knowledge.

3. Simon’s Means-Ends Analysis. The model (1) interacts with the outer data 
environment through two information channels:

• Afferent (or ‘inward’) information: it captures and represents the ‘difference’ 
between the desired and present model using d0(x).9

• Efferent (or ‘outward’) information: it intelligently searches and provides the best 
course of ‘actions’ that changes the present model through (1) to reduce the dif-
ference10.

Herbert Simon (1988) noted that any general-purpose computational learning sys-
tem must have these two information processing components. Models equipped with 
this special structure are known as the ‘Means-Ends analysis model’ in the artificial 
intelligence community.

4. Detective’s Microscope.11 Information in the data can be broken down into 
two parts:

Model-0 explains the first part, whereas d0(x) captures everything that is unexplain-
able by the initial f0(x) . Accordingly, d0(x) performs dual tasks: it reveals the incom-
pleteness of our starting assumptions and provides strategies on how to revise it 
to account for the observed puzzling facts. In short, d(u;F0,F) plays the role of a 
detective’s microscope, permitting data investigators to assemble clues to initiate a 

(3)Data Information = Anticipated part + Unexpected surprising part.

9 It would be pointless to waste computational resources on the redundant part of the data.
10 d0(x) “fires” actions when the difference in information content between F0 and F̃ reaches a threshold.
11 The name was inspired from John Tukey (1977, p. 52).
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systematic search for new explanatory hypotheses that fit the evidence and solve the 
puzzle.

5. System-1 and System-2 Architecture.12 In our dyadic model, System-1 is 
denoted by f0(x) that captures the background knowledge component. Model-0 inter-
acts with the environment through System 2 d-function. The DSF d allows model-0 
to self-examine its limitations and also offers strategies for self-correcting to adapt 
to new situations. The DSF plays the role of a ‘supervisor’ whose goal is model 
management. It helps the subordinate f0 to figure out what’s missing and how to fix 
this. Our dyadic model combines both system-1 and system-2 into one integrated 
modeling system.

6. A Change Agent: The great philosopher Heraclitus taught us that change is 
the only constant thing in this world. If we believe in this doctrine then we should 
focus on modeling the change, not the model itself.13 The dyadic model operational-
izes this philosophy by providing a universal law of model evolution: how to pro-
duce a useful model by changing an imperfect model-0 in a data-adaptive manner. 
The rectified f0(x) inherits new characteristics through d0(x) that give them a better 
chance of survival in the new data environment.

A Robust Nonparametric Estimation Method

To operationalize the density-sharpening law, we need to estimate from data the 
function d0(x) , which is the cause of change in the state of a probability distribution. 
We describe a theory of robust nonparametric estimation whose core concepts and 
methodological tools are introduced in a ‘programmatic’ style—making it easy to 
translate the theory into a concrete algorithm.

Remark 2 (What are we approximating?) Before describing the approximation the-
ory, it is vital to emphasize that, unlike traditional nonparametric (or machine learn-
ing) methods where the goal is to produce a density estimate f̂ (x) , in our case, the 
focus is on estimating the sharpening kernel d̂0(x)—the ‘gap’ between theory and 
measurements. This will provide rational explanations for the surprising facts and, 
because of Eq. (1), concurrently rectify the initial model f0 . Also, see Sec. 8.

Step 0. Data and Setup. We observe a random sample X1,… ,Xn ∼̇ F0 . By “ ∼̇ ” we 
mean that F0 is a tentative (approximate theoretical) model for X that is given to us. 
And, f(x) denotes the unknown true model from which the data were generated.

Step 1. LP-orthogonal System. Note that DSF d0(x) is a function of rank-F0 trans-
form (i.e., probability integral transform with respect to the base measure) F0(X) . 
Hence, one can efficiently approximate d◦F0(x) ∈ L2(dF0) by expanding it in a Fourier 

12 This ‘Two Systems’ analogy was inspired by Daniel Kahneman’s work on ‘Thinking, Fast and Slow.’
13 Isaac Newton confronted a similar problem in the mid-1600s: He wanted to describe a falling object, 
which changes its speed every second. The challenge was: How to describe a “moving” object? His revo-
lutionary idea was to focus on modeling the “change,” which led to the development of Calculus and 
Laws of Motion. Here we are concerned with a similar question: How to change probability distribution 
when confronted with new data? In our dyadic model (1), the sharpening function d provides the neces-
sary “push to change.”
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series of polynomials that are function of F0(x) and orthonormal with respect to the 
user-selected base-model f0(x) . One such orthonormal system is the LP-family of rank-
polynomials (Mukhopadhyay and Fletcher 2018; Mukhopadhyay 2017), whose con-
struction is given below.

LP-basis construction for an arbitrary continuous F0 : Define the first-order LP-basis 
function as standardized rank-F0 transform:

Note that �0(T1(X;F0)) = 0 and Var0(T1(X;F0)) = 1 . Next, apply Gram-Schmidt pro-
cedure on {T2

1
, T3

1
,…} to construct a higher-order LP orthogonal system Tj(x;F0):

and so on. For data analysis, we compute them by executing the Gram-Schmidt pro-
cess numerically. Hence, there is no need for bookkeeping the explicit formulae of 
these polynomials. By construction, the LP-sequence of polynomials satisfy the fol-
lowing conditions:

where �jk is the Kronecker’s delta function. The notation for LP-polynomials 
{Tj(x;F0)} is meant to emphasize: (i) they are polynomials of F0(x) (not raw x) and 
hence are inherently robust. (ii) they are orthonormal with respect to the distribution 
F0 , since they satisfy (8). We also define the Unit LP-bases via quantile transform: 
Sj(u;F0) = Tj(Q0(u);F0) , 0 ≤ u ≤ 1.

Step 2. LP-Fourier Approximation. LP-orthogonal series representation of the den-
sity-sharpening function d0(x) is given by

where the expansion coefficients LP[j;F0,F] satisfy

Step 3. Nonparametric Estimation. To estimate the LP-Fourier coefficients from 
data, rewrite Eq. (10) in the following form:

(4)T1(x;F0) =
√
12
�
F0(x) − 1∕2

�
.

(5)T2(x;F0) =
√
5
�
6F2

0
(x) − 6F0(x) + 1

�

(6)T3(x;F0) =
√
7
�
20F3

0
(x) − 30F2

0
(x) + 12F0(x) − 1

�

(7)T4(x;F0) =
√
9
�
70F4

0
(x) − 140F3

0
(x) + 90F2

0
(x) − 20F0(x) + 1

�
,

(8)∫x

Tj(x;F0) dF0 = 0; ∫x

Tj(x;F0)Tk(x;F0) dF0 = �jk,

(9)d0(x) ∶= d(F0(x);F0,F) = 1 +
∑

j

LP[j;F0,F]Tj(x;F0),

(10)LP[j;F0,F] =
⟨
d◦F0, Tj

⟩
F0

, (j = 1, 2,… , ).
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which expresses LP[j;F0,F] as the expected value of Tj(X;F0) . Accordingly, estimate 
the LP-parameter as

These expansion coefficients act as the coordinates of true f(x) relative to assumed 
f0(x):

where r is the number of unique values observed in the data.
Step 4. Surprisal Index. Can we quantify the surprise of f0 when it comes in con-

tact with the new data? We define the surprise index of the hypothesized model as 
follows:

which can be computed by substituting (12) into (14). The motivation behind this 
definition comes from recognizing that SI(F0,F) = ∫ 1

0
d2 − 1 , i.e., the divergence-

measure (14) captures the departure of d(u;F0,F) from uniformity. Note that when 
d takes the form of Uniform(0, 1) , then no correction is required in (1)—i.e., the 
assumed model f0(x) is capable of fully explaining the data without being surprised 
at anything. An additional desirable property of the measure (14) is that it is invari-
ant to monotone transformations of the data.

Remark 3 (Information is an observer-dependent concept) Our definition (14) is dif-
ferent from the classical Shannon-style measure of surprise or information. We view 
surprise as a “fundamentally relativistic,” not an absolute quantity. The same data 
can have different surprising information content for different background-knowl-
edge-based initial models/agents. In more philosophical terms: SI(F0,F) captures 
observer-specific useful information of a dataset.

Step 5. Key Elements of Surprise. A ‘large’ value of SI(F0,F) indicates that the 
model f0(x) got shocked by the data. But what caused this? This is the same as ask-
ing: what are the main ‘broken components’ of the initial believable model f0(x) that 
need repair? As George Box (1976) said:

Since all models are wrong the scientist must be alert to what is importantly 
wrong. It is inappropriate to be concerned about mice when there are tigers 
abroad.

(11)

LP[j;F0,F] = ∫
∞

−∞

d0(x)Tj(x;F0)f0(x) dx = ∫
∞

−∞

Tj(x;F0)f (x) dx = �F[Tj(X;F0)]

(12)L̃Pj ∶= LP[j;F0, F̃] = �̃[Tj(X;F0)] =
1

n

n∑

i=1

Tj(xi;F0).

(13)
[
F
]
F0

∶=
(
LP[1;F0,

�F],… , LP[m;F0,
�F]
)
, 1 ≤ m < r

(14)SI(F0,F) =
∑

j

|||LP[j;F0,F]
|||
2



 Journal of Quantitative Economics

1 3

Note that the value of L̃Pj is expected to be “small” when underlying distribution 
is close to the assumed F0 ; verify this from (12). We discuss two pruning strategies 
that effectively remove the noisy LP-components that can cause the density estimate 
f̂ (x) to be unnecessary wiggly. Identify the ‘significant’ non-zero LP-coefficients14 
with ��LPj� > 2∕

√
n . One can further refine the denoising method as follows: sort 

them in descending order based on their magnitude (absolute value) and compute 
the penalized ordered sum of squares. This Ordered PENalization scheme will be 
referred as OPEN:

For AIC penalty choose �n = 2 , for BIC choose �n = log n , etc. For more details see 
Mukhopadhyay and Parzen (2020) and Mukhopadhyay (2017). Find the m that max-
imizes the OPEN(m) . Store the selected indices j in the set J  ; the set of functions 
{Tj(x;F0)}j∈J  then denote the key ‘surprising directions’ that need to be incorpo-
rated into the current model to make it data-consistent. The OPEN-smoothed LP-
coefficients will be denoted by L̂Pj.

Step 6. MaxEnt Lazy Update. We build an improved exponential density estimate 
for d(u;F0,F) , which, unlike the previous L2-Fourier series model (9), is guaranteed 
to be non-negative estimate and integrates to 1. The basic idea is to choose a model 
for d to sharpen f0 in order to provide a better explanation of the data by minimiz-
ing surprises as much as possible. We can formalize this idea using the notion of 
relative-entropy (or Kullback–Leibler divergence) between f0 and the d-sharp f0:

Since d0(x) = d(F0(x);F0,F) , substituting F0(x) = u in the above equation, we get 
the following important result in terms of entropy of d: H(d) = − ∫ d log d

which can also be viewed as a measure of surprise. Thus the goal of searching for 
d by minimizing the KL-divergence between the old and new model reduces to the 
problem of finding a d by maximizing its entropy. This is known as the principle 

(15)����(m) = Sum of squares of top m LP coefficients −
�n
n
m.

KL(f0‖f ) =∫ f (x) log
� f (x)

f0(x)

�
dx

=∫
f (x)

f0(x)
log

� f (x)

f0(x)

�
f0(x) dx

=∫ d0(x) log{d0(x)} f0(x) dx

(16)KL(f0‖f ) = ∫
1

0

d log d = −Entropy(d),

14 Under the null model, sample LP-statistic follows asymptotically N(0, n−1∕2).
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of maximum entropy (MaxEnt), first expounded by Jaynes (1957).15 However, an 
maximization of H(d) = − ∫ 1

0
d log d under the normalization constraint ∫ 1

0
d = 1 , 

among all continuous distributions supported over unit interval, will lead to the triv-
ial solution:

Remark 4 Despite its elegance, the classical Jaynesian inference is an incomplete 
data modeling principle since it only tells us how to assign probabilities, not how 
to design and select appropriate constraints. Discovery, by definition, can’t happen 
by imposing preconceived constraints. The core ‘intelligence’ part of any empirical 
modeling involves appropriately designing and searching for relevant ‘directions’ 
(constraints) that neatly capture the surprising information. More discussion on this 
is given in Mukhopadhyay (2022a).

Law of Lazy Update. The key question is: how to determine the informative con-
straints? Jaynes’ maximum entropy principle remains completely silent on this issue 
and assumes we know the relevant constraints ab initio (i.e., sufficient statistic func-
tions)—which, in turn, puts restrictions on the possible ‘shape’ of the probability 
distribution. We avoid this assumption as follows, using what we call ‘Law of Lazy 
Update’: (i) Identify a small set of most important LP-sufficient statistics func-
tions16 using Step 5, which filters out the ‘directions’ where close attention should 
be focused. (ii) Find a sparse (smoother) probability distribution by maximizing 
the entropy H(d) under the normalization constraint ∫ d = 1 and the following LP-
moment constraints:

The solution of the above maxent-constrained optimization problem can be shown to 
take the following exponential (18) form

where Ψ(�) = log ∫ 1

0
exp{

∑
j �jSj(u;F0)} du.

Remark 5 (Economical and Explanatory Construction) The principle of ‘maxent 
lazy update’ provides a model for d(u;F0,F) , which acts as a policymaker for f0—
one who formulates the preferred course of action on how to amend the existing 

d(u;F0,F) = 1, 0 < u < 1.

(17)�[Sj(U;F0)] = LP[j;F0, F̃], for j ∈ J.

(18)d
�
(u;F0,F) = exp

{∑

j∈J

𝜃jSj(u;F0) − Ψ(�)
}
, 0 < u < 1

15 See, for example, the work of Amos Golan (2018) and Esfandiar Maasoumi (1993) for an excellent 
review of the usefulness of ‘maxent information-theoretic thinking’ for econometrics and decision sci-
ences. Additional recent works on the application of maximum-entropy techniques in empirical econom-
ics can be found in Buansing et al. (2020), Mao et al. (2020) and Lee et al. (2021).
16 These sets of specially-designed functions provide the simplest and most likely explanation of how the 
model f0 differs from reality.
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model f0 (incorporating Eqs. 17) in a cost-effective way to achieve the most “eco-
nomical description” of the current reality.

Remark 6 Incidentally, Peirce also had a strong interest in building ‘economical’ 
models.17 and was influenced by the English philosopher William of Ockham. Dur-
ing the 1903 Harvard Lectures on Pragmatism, Peirce noted: “There never was a 
sounder logical maxim of scientific procedure than Ockham’s razor: Entia non sunt 
multiplicanda praeter necessitatem.”

Remark 7 (Rational agent interpretation) d0(x) acts as a rational agent for f0(x) , 
which designs and selects best possible actions (alternatives) by minimizing the sur-
prise (16), subject to the constraints (17). This kind of rationalistic empirical models 
were called machina economicus by Parkes and Wellman (2015).

Remark 8 Our style of learning of d function from data performs two critical opera-
tions: The formation of new hypotheses (design of LP-sufficient statistic functions 
of d) and selection or adoption of some of the most prominent ones (through OPEN 
model selection).

Repair‑Friendly DS(F0,m) Models

Definition 2 DS(F0,m) stands for Density-Sharpening of f0(x) using m-term LP-
series approximated d0(x) . Two categories of DS(F0,m) class of distributions are 
given below:

They are obtained by replacing (9) and (18), respectively, into the dyadic model 
(1). The truncation point m indicates the search-radius around the expected f0(x) 
to create permissible models. DS(F0,m) models with higher m entertains alterna-
tive models of higher complexity. However, to exclude absurdly rough densities, it is 
advisable to focus on the vicinity of f0 by choosing an m that is not too large. In our 
experience, m = 6 (or at most 8) is often sufficient for real data applications—since 
f0(x) is a knowledge-based sensible starting model.

(19)

Orthogonal series DS(F0,m): f (x) = f0(x)

[

1 +
m
∑

j=1
LP[j;F0,F] Tj(x;F0)

]

,

(20)

Maximum Entropy DS(F0,m) ∶ f (x) = f0(x) exp

{
m∑

j=1

�jTj(x;F0) − Ψ(�)

}
.

17 Also see Peirce’s 1979 article on “Economy of Research,” which is widely regarded as the first real 
attempt to establish the fundamental principles of marginal utility theory Stephen Stigler brought this to 
my attention.
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Remark 9 The goal of empirical science is to progressively sharpen the existing 
knowledge by discovering new patterns in the data, thereby leading to a new revised 
theory. The ‘density-sharpening’ mechanism facilitates and automates this process.

Remark 10 (Blending the old with the new) The above density-editing schemes 
modify the initial probability law f0(x) with a small set of new additional ‘shape 
functions’ (i.e., LP-sufficient statistics {Tj(x;F0)}j∈J  ) that serve as explanations for 
the surprising phenomenon. This will be more clear in the next section where we 
carry out Peirce data analysis using the density-sharpening principle, governed by 
the simple general law described in Definition 2.

Remark 11 DS(F0,m) models can be viewed as ‘descent with modification,’ which 
partially inherits characteristics of model-0 and adds some new shapes to it. This 
shows how new models are born out of a pre-existing inexact model with some 
modification dictated by the density-sharpening kernel d0(x) —thereby helping f0(x) 
to broaden its initial knowledge repertoire.

Remark 12 (Model Economy) Recall, in “The Problem of Surprise”, we raised 
the question: how should a model adapt and generalize in the face of surprise? 
DS(F0,m) is a class of nonparametrically-modified parametric models that precisely 
answer this question. In particular, density models (19) and (20) allow modelers 
to ‘fix’ their broken models (in a fully automated manner) rather than completely 
replacing them with a brand new model built from scratch. Two practical advan-
tages of constructing auto-adaptive models: Firstly, it reduces the waste of compu-
tational resources, and secondly, it extends the life span of of the initial, imprecise 
knowledge-model f0(x) by making it reusable and sustainable—we call this “model 
economy.”

Laplace’s Two Laws of Error

Our search for the laws of errors begins with the question: what is the most natural 
choice of the error distribution that we anticipate to hold at least approximately. Two 
candidates are:

• Laplace distribution. In 1774, i.e., almost 100 years before Peirce’s experi-
ment, Laplace postulated that the frequency of an error could be expressed as an 
exponential function of the numerical magnitude of the error, disregarding sign 
(Laplace 1774). This is known as Laplace’s first law of error.

• Gaussian distribution. Laplace proposed Gaussian distribution as the second can-
didate for the error curve in 1778.

These two distributions provide a simple yet believable model-0 to start our search 
for a realistic error distribution for the Peirce data. Our strategy will be as follows: 
first, would like to know which of Laplace’s laws provides a more reasonable choice 
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as an initial candidate model. In other words, which distribution is relatively less 
surprised by the Peirce data. Second, we like to understand the nature of misspecifi-
cations of these two models over the set of 24 experimental datasets. This will ulti-
mately help us repair f0(x) by informing us which components are damaged.18 As 
John Tukey (1969) said: ‘Amount, as well as direction, is vital.’

Informative Component Analysis

Generating new hypotheses in response to the rejection of the initial candidate 
model is one of the central objectives of Informative Component Analysis (ICA).

Gaussian Error Distribution. We devise a graphical explanatory method, called 
Informative Component Analysis (ICA), to perform ‘informative’ data-model com-
parison in a way that is easily interpretable for large number of parallel experiments 
like Peirce data. The general process goes as follows:

Algorithm: Informative Component Analysis (ICA)
Step 0. Data and notation. For the t-th day experiment: we observe 

xt = (xt1, xt1,… , xtnt ) with empirical distribution F̃t.
Step 1. For each day, we estimate the best-fitted Gaussian distribution 

𝜑t = N(�̃�t, �̃�t) , where the parameters are robustly estimated: �̃�t is estimated by the 
median and �̃�t is estimated by dividing the interquartile range (IQR) by 1.349. The 
presence of large outlying observations makes the IQR-based robust-scale estimate 
more appropriate than the usual standard deviation based estimate of �t ; see Fig. 2.
Step 2. For each experiment, compute the LP-coefficients between the 

assumed �t and the empirical distribution F̃t.

for t = 1, 2,… , 24 and j = 1,… , 4 . The smoothed LP-coefficients (applying 
OPEN model selection method based on AIC-penalty; see Eq.  15) are stored in 
LP[t, j] ∶= L̂P[j;Φt, F̃t].
Step 3. LP-Map: Display the 24 × 4 LP-matrix as an image for easy visualiza-

tion and interpretation. This is shown in Fig. 3a.
Interpretation. What can we learn from the LP-map? It tells us the nature of non-

Gaussianity of the error distributions for all 24 of the experiments in a compact 
way. The ICA-diagram detects three major directions of departure (from assumed 
Gaussian law) that more or less consistently appeared across different days of the 
experiment: (i) excess variability: This is indicated by the large positive values of 
the second-order LP-coefficients (2nd column of the LP-matrix) {LPt2}1≤t≤24 . (ii) 
Asymmetry: It is interesting to note that the values of {LPt3}1≤t≤24 change from pos-
itive to negative somewhere around the 15th day—which implies that the skewness 
of the distributions switches from left-skewed to right-skewed around the middle of 

(21)LP[j;Φt, F̃t] = �
[
Tj(Xt;Φt);F̃t

]
=

1

nt

nt∑

i=1

Tj(xti;Φt).

18 Also, some misspecifications may be harmless as far as the final decision-making is concerned. 
Knowing the nature of deficiency can help us avoid over-complicating the model-0.
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the experiment. (iii) Long-taildness: Large positive values of {LPt4}1≤t≤24 strongly 
indicate that the measurement densities are heavily leptokurtic, i.e., they possess 
larger tails than normal. These fatter tails generate large (or small) discrepant errors 
more frequently than expected—as we have witnessed in Fig. 1.

Laplace Error Distribution. Here we choose f0(x) as the �������(�, s) 
distribution:

where � ∈ R and s > 0 . The unknown parameters are estimated using the maximum 
likelihood (MLE) method that automatically yields robust estimates: sample median 
for the location parameter � and mean absolute deviation from the median for the 
scale parameter s.

The LP-map after applying the ICA algorithm is displayed in Fig.  3b, which 
shows that a moderate degree of skewness and a major tail-repairing are needed to 
make Laplace consistent with the data. It is important to be aware of them to build a 
more realistic model of errors—which is pursued in the next section.

Laplace or Gauss? Following (14), compute

by taking the sum of squares of each row of the LP-matrix. Figure 4 compares the 
surprisal-index for the normal and Laplace distribution over 24 experiments. From 
the plot, it is evident that Peirce’s data were better represented by Laplace than by 
Gaussian.

Examples

The primary goal here is to show how density-sharpening provides a statistical 
method for repairing a scientifically meaningful model based on observed data. To 
that end, we apply the theory of density-sharpening to two specific day studies with 
f0(x) as the Laplace distribution.

Study #11 (July 19, 1872). The best fitted Laplace distribution with mean 213 
and scale parameter 25.7 is shown in the top left of Fig. 5. The estimated sharpen-
ing kernel with smoothed LP-coefficients (see “A Robust Nonparametric Estimation 
Method”) is given below:

and is shown in the middle panel.
The graphical display of d0(x) provides actionable insights into how to modify the 

Laplace distribution to reduce the empirical surprise. The non-zero L̂P3 and L̂P4 indi-
cates that the Laplace distribution needs to be corrected for skewness and kurtosis, 
which is accomplished via LP-orthogonal series DS(F0,m) model (19):

f0(x) =
1

2s
exp

(
−
|x − �|

s

)
, x ∈ R

(22)SI(F0t, F̃t) =

4∑

j=1

||| L̂P[t, j]
|||
2

,

(23)d̂0(x) ∶= d̂(F0(x);F0,F) = 1 + 0.095T3(x;F0) − 0.148T4(x;F0),



 Journal of Quantitative Economics

1 3

where (�0, s0) = (213, 25.7) . The model (24) sharpens the assumed Laplace law to 
render it more closer to the observed fact. The bottom-left panel of Fig. 5 displays 
the asymmetric Laplace distribution with a shorter left-tail. The maxent DS(F0,m) 
estimate

whose shape is almost indistinguishable from that of (24), and thus not displayed.
Study #13 (July 22, 1872). We apply the same steps to derive the error distribu-

tions of the day-13 experiment. We choose f0(x) as Laplace(244, 20) and estimate the 
density-sharpening function:

The shape of d̂0(x) clearly indicates that the peak and the tails of the initial Laplace 
distribution need repairing.

Ampliative character of our modeling: The DSF d̂0(x) allows the Laplace to iden-
tify its own limitations and drives it to evolve into a new, more complete one:

(24)f̂ (x) =
1

2s0
exp

(
−
|x − �0|

s0

)[
1 + 0.095T3(x;F0) − 0.148T4(x;F0)

]
,

(25)

̂̂
f (x) =

1

2s0
exp

(
−
|x − �0|

s0

)
exp

{
0.098T3(x;F0) − 0.153T4(x;F0) − 0.0152

}
,

(26)d̂0(x) ∶= d̂(F0(x);F0,F) = 1 − 0.256T4(x;F0).

Fig. 2  Two normal distributions are compared with different scale estimates: The red curve is based 
on the robust IQR-based scale estimate and the blue one is the usual standard deviation-based curve. 
Clearly, the blue curve underestimates the peak and overestimates the width of the density (due to the 
presence of few large values in the tails)
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(27)f̂ (x) =
1

2s0
exp

(
−
|x − �0|

s0

)[
1 − 0.256T4(x;F0)

]
,

Fig. 3  Informative component analysis: LP-Map for Gauss and Laplace models. The rows denote differ-
ent time points and columns are the order of LP coefficients LP[t, j] . This graphical explanatory method 
uncovers what are some of the most prominent ways a large number of related distributions differ from 
the anticipated f0(x)
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with (�0, s0) = (244, 20) ; shown in the bottom-right panel of Fig. 5. Compared with 
the Laplace distribution (the blue curve), the d-modified Laplace (the red curve) is 
much wider with a rounded peak and clipped tails.

A Generalized Law of Errors

We have seen that for Peirce data, Laplace distribution was surprised in differ-
ent manners for different experiments (refer Figs. 3b and 5): e.g., on day 11, the 
Laplace model got puzzled by the discrepancy in skewness, and tail of the meas-
urement distribution, whereas on day 13, the surprise was mainly due to tail dif-
ferences. The question naturally arises: how should a Laplace model respond to 
unexpected changes in data? A proposal for generalized law of errors is given that 
allows Laplace to automatically adapt to new data environments.

Definition 3 (Self-improving Laplace model) We call X ∼ SharpLaplace(m), 
when the density of X obeys the following parameterizable form:

(28)f (x) =
1

2s
exp

(
−
|x − �|

s

)
exp

{ m∑

j=1

�jTj(x;F0) − Ψ(�)
}
, x ∈ R.

Fig. 4  Shows the surprisal-indices (22) for the Gauss and Laplace models, over the sequence of 24 
experiments. A ‘small’ value of SI(F0, F̃) indicates that it is comparatively easier to repair f0(x) to fit the 
data. The plot provides a clear rational basis for choosing Laplace as a preferred model-0 since the blue 
curve consistently exceeds the orange curve for most experiments



1 3

Journal of Quantitative Economics 

Fig. 5  Mechanism of density-sharpening for 11th (1st column) and 13th (2nd column) day experiments. 
Top row: Display the best-fitted Laplace distributions f0 . Middle row: Displays the estimate d̂(u;F0, F̃) , 
which reveals the nature of statistical uncertainties of the Laplace models. Put it simply, the shape of 
d̂(u;F0, F̃) answers the central question of discovery: What have we learned from the data that we did 
not already know? This helps to invent new hypotheses that are worthy of pursuit. Last row: Estimated 
SharpLaplace models f0(x) × d̂0(x) are shown (red curves). Here d̂0(x) rectifies the shortcomings of 
Laplace model by “bending” it in a data-adaptive manner
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The insights gained from the analysis done in “Examples” suggest that m = 4 or 6 
could be perfectly reasonable for most practical purposes. The power of this model 
lies in its capacity to self-modify its structure in a data-driven manner.

Remark 13 SharpLaplace class of error models has inbuilt “rules” (principles 
and mechanisms) that tell a Laplace how to adapt with the data in a completely 
autonomous fashion without being pre-programmed into them. This auto-adaptive 
nature makes this model realistic enough to be useful for a wide range of scientific 
applications.

Peirce’s Law of Discovery

Not the smallest advance can be made in knowledge beyond the stage of vacant 
staring, without making an abduction at every step. — C. S. Peirce (1901)

All empirical scientific inquiry goes through three fundamental inferential phases:

• Discovery: developing new testworthy hypotheses;
• Hypothesis testing: confirming the plausibility of a hypothesis;
• Prediction: predicting by extrapolating the acceptable model.

Over the last century or so, statistical inference has been dominated by hypothesis 
testing and prediction19 problems, virtually neglecting the key question of where the 
reasonable hypothesis came from, leaving it to the scientists’ imagination and specu-
lation. In the article ‘Statistics for Discovery,’ George E. P. Box argued that

[S]tatistics has been overly influenced by mathematical methods rather than 
the scientific method and consequently the subject has been greatly skewed 
towards testing rather than discovery. — George Box (2001)

Our focal interest is in the problem of discovery, not confirmation or prediction. We 
showed how density-sharpening based modeling can provide the basis for develop-
ing statistical laws of discovery.

Charles Sanders Peirce introduced the idea of abductive inference (as opposed 
to inductive inference) to describe the process of generating hypotheses in order to 
explain surprising facts. He developed abductive reasoning over 50 years (between 
1865 and 1914), and it is considered as Peirce’s most significant contribution to the 
logic of science. According to Peirce, abduction ‘is the only logical operation which 
introduces any new idea.’ The importance of abduction for scientific discovery was 
further stressed by Heckman and Singer (2017):

Abduction is different from falsification or corroboration. It moves descrip-
tions of the world forward rather than just confirming or falsifying hypoth-

19 Discovery is much harder than prediction because one can go away with good prediction without 
understanding. But for discovery, understanding ‘how and why’ is a must.
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eses. It is part of a process of discovery where model reformulation, revision 
of hypotheses and addition of new information are part of the process.

Abductive Inference Machine (AIM). This paper lays out a proposal for algorith-
mic operationalization of Peircean style abductive inference and discovery. In par-
ticular, we described how the density-sharpening principle can help us design an 
Abductive Inference Machine (AIM20) that (i) allows us to properly handle model 
uncertainty and misspecifications; (ii) produces abductive instinct—by guiding us 
to make better decisions (than depending on pure luck alone) in formulating and 
adopting new promising hypotheses that have a better chance of being true; and (iii) 
generates a preferred course of actions for extracting statistical models from experi-
mental data by revising an initially misspecified scientific model.

AIM: Science of Model Development and Revision

AIM is a theory of model-revision, not parameter estimation (MLE/Bayes/robust 
methods) or curve-fitting (machine learning methods). There are some unique objec-
tives and challenges, which set it apart from traditional data modeling cultures. In 
the following, we will highlight a few major ones (D1-D7), taking help from the 
Peirce data analysis done in “Laplace’s Two Laws of Error”.

Four stages of abductive model building:
  1. Initial state. AIM starts with an approximate model f0 (based on, say, some 

economic theory) and measurements.21 The top left density in Fig. 5 shows the best-
fitted theoretical model—the Laplace distribution for experiment #11, where the 
unknown parameters were estimated using MLE.

D1  Non-standard inferential questions: Justification → discovery. However, for 
modern econometricians and policymakers, parameter estimation or significance 
testing routines (classical inference; see Haavelmo (1944)) are not the most interest-
ing issues. Modern quantitative economists are more concerned with questions like: 
“How far is our speculated model from reality? What are the most important gaps 
in our understanding? In which directions can I improve my theory-based model?” 
Developing a general approach to answering these modeling questions is the central 
imperative of AIM.

  2. Encountering surprise. ‘Surprise’ jumpstarts the abductive learning pro-
cess. Surprise essentially means that there is something new in the data relative to 
the assumed model f0 , which we estimate by SI(F0,F) following Eq. (14). Simply 
put, it quantifies how much new information is left on the data to be explained; 

20 It tells empirical analysts where to AIM as they search for possible new discoveries.
21 In our context, the theory of Laplace’s law of error was confronted with Peirce’s experimental data.
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see the orange curve in Fig. 4. Intelligent learners (agents) utilize surprise as a 
source of additional information to learn something new about the phenomena.

         Model-disequilibrium theory. A ‘large’ value of SI(F0,F) indicates the model 

is ‘out of equilibrium’ with the current environment, and to restore equilibrium, 
a careful revision of the current theoretical model (beyond parameter tuning) is 
necessary. But how do we sharpen the existing model? Can we develop an auto-
matic procedure to generate the sharpening rules? These questions are beyond the 
reach of classical statistical learning methods. AIM approaches these questions by 
first characterizing the “knowledge-gap” between the postulated theory and the 
observed measurements.

  3. Discovering the knowledge-gap. Figure 5 (left of middle panel) displays 
the estimated sharpening kernel d̂(u;F0,F) for experiment #11, which acts as a 
‘channel’ through which information flows from the data to the model—obeying 
the density-sharpening principle—to bring the system (model-data) back to equi-
librium. Accordingly, d̂(u;F0,F) acts as a “bridge” between a theorized model and 
actual measurements. The following remark by Trygve Haavelmo (1944) high-
lights how crucial this accomplishment is:

The method of econometric research aims, essentially, at a conjunction of 
economic theory and actual measurements, using the theory and technique 
of statistical inference as a bridge pier.

       Hypotheses generation. Abduction is the logic of discovery. Why do we 
need a logic for discovery? Charles Peirce, Herbert Simon, and many other pro-
lific researchers believed that a trial-and-error search for “invention” is seldom 
a worthwhile strategy, especially for complex systems (like economics, biology, 
etc.). Norwood Hanson said it beautifully in his book:

“If establishing an hypothesis through its predictions has a logic, so has the 
conceiving of an hypothesis.” —Patterns of Discovery (1958)

AIM helps scientists to make educated guesses—on what’s the next best hypoth-
esis to try from a vast pool of conceivable collections—by autonomously learn-
ing new realities from the data through d0(x) . Classical inference, on the other 
hand, mainly deals with the confirmatory or predictive side of data analysis, not 
hypotheses generation and discovery.

      Modeling surprise, not the full data. AIM searches for patterns in the “unex-
plained rest”—the parts of the data that were left unexplained by the existing theory. 
Notice that we are not blindly searching for patterns in the full data; we are only 
focusing on the novel parts of the data that contain new information. It is important 
to distinguish between these two aspects. Our goal is to accelerate discovery by syn-
thesizing a simple explanatory model d̂(u;F0,F) for the surprising phenomena.

D2

D3

D4
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        Information-filtering unit. The density-sharpening kernel acts as a filter that 
discards redundant information and compactly summarizes the new information 
(knowledge-gap) as a probability density function.22 The non-zero LP-coefficients of 
d̂(u;F0,F) identify the missing elements of reality in the current theoretical model. 
For example, Eq. 23 implies that the Laplace law is misspecified in terms of sym-
metry (3rd order) and long-tailedness (4th order); also check the 11th row of the 
LP-map shown in Fig. 3. Standard statistical learning methods don’t have any such 
capabilities.

   4. Model-editing. AIM fills the knowledge-gaps by revising initial probability 
model based on the principle of density-sharpening, which can be described by a 
simple logical formula:

Every successive iteration of the above procedure generates a more realistic 
model than its predecessors. Here the density-sharpening kernel d0(x) represents the 
progress in our understanding, which makes the hypothesized simplified model elas-
tic enough to be adaptable for real-data.23

By executing (29), AIM designs a class of most pursuitworthy alternative models 
for the data and selects the best one using the ‘law of lazy update.’24 Eq. 25 shows 
the sharp-Laplace model for study #11, also displayed in the bottom of Fig. 5. The 
parsimonious d0(x) keeps the final model ‘sophisticatedly simple’25 by smoothly 
extending the hypothesized Laplace model to explain the data.

D6   AIM ≠ Curve-fitting. One of the non-standard aspects of AIM is that it’s not 
about building fancy empirical models starting from a clean slate—it’s about build-
ing a statistical structure on top of the already existing scientific knowledge base 
to advance the current theory.26 In doing so, it provides efficient ways of handling 
an idealized simple model for discovering new knowledge from complex real-world 
data.

D7  Conservative-liberal coalition. Note that the derived sharp-probabilistic law 
(e.g., Eq. 25) combines the generality (generic features) of Laplace’s laws of error 
with the specificity (stylized features) of Peirce’s data. This coalition of conservative 
(sticking to current dogma) and liberal (openness to course correction when nec-
essary) ideologies makes our data modeling philosophy stands out from traditional 
statistical and machine learning data-fitting methods.

22 As Herbert Simon said: “Anything that gives us new knowledge gives us an opportunity to be more 
rational.” From that perspective, AIM could be a powerful tool to guide economic agents in making 
rational decisions under uncertainty. More details can be found in Mukhopadhyay (2022b).
23 In other words, we don’t believe in the ‘one-fits-all’ model. Our goal is to provide economists with a 
systemic principle for iteratively revising their preliminary models by confronting them with real-world 
data.
24 It is fundamentally different from model selection or multiple hypothesis testing, which deals with a 
pre-determined set of alternative models. Model discovery and model selection are two very different 
things.
25 Arnold Zellner (2007): ‘a much heavier emphasis on sophisticated simplicity in econometrics is 
needed.’
26 In more simple terms, AIM = Learning from data by standing on the foundation of existing knowl-
edge.

D5
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AI = Abductive Intelligence

When can we say a model is behaving intelligently? This is no easy question. How-
ever, at least part of the answer, I believe, lies in inspecting how the model reacts to 
surprise and adapts to changes. An intelligent model should not be ‘brittle,’ which 
collapses all of a sudden upon encountering surprises from the data. The model 
should have an ‘internal’ mechanism that help it rise to the occasion by provid-
ing recommendations for how to put together incomplete pre-existing knowledge 
(encoded in model-0) with the data. We refer to this core intellectual component of 
any learning problem as “abductive intelligence.”

Building models that are capable of improving themselves has been a dream of 
computer scientists since the inception of the artificial intelligence field in 1956. 
It was at the top of the agenda in the proposal written for the Dartmouth Summer 
Research Project on artificial intelligence:

“Probably a truly intelligent machine will carry out activities which may best 
be described as self-improvement.” —John McCarthy et al. (1955)

More than developing new ways of building data models, we need new principles 
for sharpening an existing model’s infrastructure. Such a model, equipped with self-
improving capability, then gradually acquires more knowledge about the environ-
ment by building increasingly refined models of reality.

“Once we have devised programs with a genuine capacity for self-improve-
ment a rapid evolutionary process will begin. As the machine improves both 
itself and its model of itself, we shall begin to see all the phenomena associ-
ated with the terms ‘consciousness,’ ‘intuition’ and ‘intelligence’ itself.” —
Marvin Minsky (1966)

Remark 14 (Intelligence of a Model) A model’s ‘intelligence’ is its capacity to 
change and remodel itself when confronted with new data. Any model which is not 
capable of ‘self-improving’ is a disposable, dead model.

Remark 15 (Designing an Intelligent Model) Model is a work in progress; there is 
no such thing as the ‘final model.’ The important part is knowing how to expand the 
knowledge base by sharpening yesterday’s version. With that being said, the focus of 
present-day machine learning has primarily been on developing a good subordinate-
model f0(x) but not so much on designing the supervisory-model d0(x) . To achieve 
the goal of designing intelligent machines, it seems inevitable that we have to shift 
our attention to the ‘supervisory’ part of the model—that which knows how to react 
to surprise in order to evolve to its next avatar. In the long run, the durability of a 
model depends more on its skill to adapt than its built-in skill. And to design such 
self-improving models, we will need to instill ‘abductive intelligence’ in the existing 
machine learning systems—which is the goal of AIM.
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Peirce: An Explorer Upon Untrodden Ground

I was an explorer upon untrodden ground —      C. S. Peirce (1902)
Bertrand Russell (1959) described Charles Sanders Peirce as “one of the most 

original minds of the later nineteenth century, and certainly the greatest Ameri-
can thinker ever.” He was a craftsman of the highest order, who made some emi-
nent contributions to the development of nineteenth-century American Statistics. 
Peirce analyzed his 1872 experimental data in the paper “On the theory of errors 
of observation”—which is a gold mine of ideas. His techniques and philoso-
phy of data analysis reported in the paper were a testament to his brilliance as 
a master applied statistician. On the landmark occasion of 150th anniversary of 
his famous 1872 study,27 we have looked back at his views on empirical mod-
eling. The current article offers a framework that embraces and operationalizes 
the Peircean view of discovery and statistical modeling. We called this frame-
work AIM–Abductive Inference Machine—which is grounded in the principle of 
density sharpening and a new class of models called “dyadic models.” We have 
illustrated the key algorithmic steps and philosophical aspects of our modeling 
approach using Peirce’s 1872 experimental data to reveal new insights on the 
probabilistic nature of measurement uncertainties.
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