
A. SUPPLEMENTARY NOTES

This supplementary section contains some additional notes on the connections and differences

between the Bayesian statistical approach vs. the Abductive statistical approach to model

misspecification, robustness, and decision-making.

A1. The two types of model-uncertainty: Parametric and nonparametric

It is important to distinguish two main types of model uncertainty: parametric uncertainty

and more general nonparametric shape uncertainty.

1) Parametric uncertainty is a classical scenario in which the model structure is assumed

to be known but not the relevant parameter values. In this setup, it is implicitly assumed

that the decision-maker is aware of the correct parameterized statistical models f0p¨; θq, which

is misspecified in terms of only θ.26 We can therefore think of it as a finite-dimensional

(statistical search) problem, for which we have a number of legacy theories, including Bayesian

inference.

2) Under nonparametric shape uncertainty, we work with much deeper or more severe

uncertainties about the shape of the data-generating model. It is a far more challenging

infinite-dimensional (statistical search) problem for which there is no established general

theory. This paper addresses this concern by offering a ‘general theory of nonparametric

model revision’ whose foundation stands on two pillars: the density-sharpening principle and

abductive inference. In our theoretical framework, we only have access to a probability model

f0pxq that approximately encodes the decision-maker’s beliefs about the distribution of the

observations. Our theory then provides a systematic method for searching a useful class of

alternative models DSpF0,mq by ‘correcting’ (or sharpening) the hypothesized model f0 in an

automated data-driven manner.

26As a result, decision theory based on parametric uncertainty is predicated on a highly restrictive model
uncertainty assumptions.
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A2. Bayesian statistical approach vs. Abductive statistical approach

1) Bayesian inference is extremely effective for dealing with parametric model uncertainty.

Bayes’ law provides a principled method for updating beliefs about a model’s parameters.

Bayes’ law. Given observed data x “ px1, . . . , xnq and the parametrized likelihood function

f0px; θq, Bayes’ multiplicative rule updates belief about θ from the prior to posterior as follows

rπpθ|xq 9 πpθq

n
ź

i“1

tf0pxi; θqu. (A.1)

For more details on standard methods for Bayesian parametric modeling, see Box (1980).27

Bayes decision rule. Optimal Bayes action is taken by minimizing the expected loss under

the posterior:

âBayes :“ argminaPA

ż

Θ

Lapθq π̃pθ|xq dθ.

For more detailed treatment refer to the standard textbooks like Berger (2013, Chapter 4).

2) Abductive inference, on the other hand, is a powerful mode of statistical reasoning for

nonparametric model uncertainty problems. In particular, the proposed density-sharpening

law provides a systematic rule for updating the shape of a probability density model.

The abductive decision analysts do not live in a fantasy world where decision-makers pretend

to know the ideal parametrized model for the data. A new class of abductive inference-based

decision-theoretic models called “dyadic models” are introduced in this paper (see Sec. 2),

which allow the analyst to automatically generate a class of probable alternative models from

data without imposing any prior structural constraints.

A3. Bayes’ model synthesis process

The goal of the “model synthesis problem” is to answer the following question:

Given a set of observations, how to systematically go about searching for a model superior to

the one the decision-maker initially guessed?

27For nonparametric Bayesian modeling see Ghosal and Van der Vaart (2017).
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Bayes model synthesis process (contrast this with the abductive model synthesis process given

in Sec. 3.1, method 2) takes into account the uncertainty of θ as follows:

1. Simulate θ1, . . . , θB from the posterior distribution rπpθ|xq, for some large B, say 1000.

2. Generate a set of plausible parametric models for the data tfpx|θjqu1ďjďB.

3. Averaging over the posterior distribution: Compute the averaged density that accounts

for the uncertainty of θ (compare this with density-sharpening based bootstrap averaging

method, Eq. 23)

f̄θpxq “ B´1
B
ÿ

j“1

fpx|θjq. (A.2)

which is an approximation to the posterior predictive density

f̄θpxq «

ż

Θ

fpx|θqπpθ|xq dθ (A.3)

The traditional frequentist point-estimate based f̂ :“ fpx; θ̂q underestimates the uncertainty

inherent in θ, and as a result, it is much ‘narrower’ than the Bayes f̄θpxq. By averaging over

the posterior distribution, f̄θpxq restores the uncertainty lost when only a single θ̂ is used.

Remark 9. Also see Remark 7, where bootstrap is used as the poor man’s Bayes posterior

probability for each alternative model synthesized from the class DSpF0,mq.

A4. Awareness of Unawareness

In our abductive model synthesis process, as described in Sections 2 and 3.1, the crucial

component is the dyadic model, which is founded on the density sharpening principle. One

way to conceptualize dyadic models is as computational agents that are aware of their own

unawareness. Using this model, decision-makers gain new previously unknown information

that had been lurking in the shadows. As the analyst becomes aware of new facts, the belief

is nonparametrically updated through the sharpening function pd0pxq. In other words, the

sharpening function alerts decision-makers to their potential ignorance.
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A5. Significance of abductive inference for decision making.

1) Adaptability. Reality always carries an element of surprise. To make effective decisions

in a dynamic uncertain environment, it is critical to ensure that the decision model can

withstand surprise; otherwise, it is unfit for use in the real world. The real advantage of using

density-sharpening-based dyadic models is that they can recuperate from surprises through

automated structural correction. As a result, an abductive decision rule based on dyadic

models can adapt to surprises in the sense that if the true model deviates from the assumed

one then still that decision works. This is achieved by averaging over the plausible alternative

situations suggested by data, as described in section 3.

2) Explainability. Another advantage of abductive inference is that it provides an inter-

pretable and transparent explanation of why and how the real world differs from decision-

makers’ initial belief about the model, which is of utmost importance when advising on deci-

sions to policymakers.

A6. Bayes, Smooth Bayes, Sharp Bayes, and Robust Bayes

As an educated guess at the data-generation process, a decision analyst handpicks a class of

parametric models tf0px; θq : θ P Θu with quantile function Q0pu; θq and cdf F0px; θq.

Definition 5 (Parametrized sharpening kernel). Define the sharpening kernel between the

true generating process fpxq and the assumed parametrized f0px; θq as

dθ :“ dθpu;F, F0p¨; θqq “
fpQ0pu; θqq

f0pQ0pu; θq; θq
, 0 ă u ă 1 (A.4)

The corresponding sample estimate is given by

rdθ :“ dθpu; rF , F0p¨; θqq “
rfpQ0pu; θqq

f0pQ0pu; θq; θq
, 0 ă u ă 1 (A.5)

where rdθ : Θ ˆ r0, 1s Ñ r0,8q, which connects information in data to parameters of interest.

With this definition in hand, we now present an important result.
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Alternative representation of Bayes Rule. We express the likelihood-based standard

Bayesian posterior update rule for θ as follows

rπpθ|xq 9 πpθq exp
␣

´

ż

rdθ log rdθ
(

. (A.6)

This is equivalent to Eq. (A.1) becuase of the following fact

´

ż

rdθ log rdθ “

ż

logtf0pxi; θqu d rF ` constant (A.7)

9

n
ÿ

i“1

logtf0pxi; θqu. (A.8)

The Bayes rule is reformulated in terms of density sharpening kernel rdθ because it offers a

coherent and principled path for generalizing the belief update rule in situations where the

probability model (likelihood function) is misspecified.

Smooth Bayes. Before delving into the Bayesian update rule under model misspecification,

we describe “smooth” Bayes—an intriguing refinement of traditional Bayes. Substitute the

noisy empirical rdθ with the smoothed pdθ (following the method of Sec. 2.2) into Eq. (A.6) to

get a smoothed version of the Bayes update rule:

pπpθ|xq 9 πpθq exp
␣

´

ż

pdθ log pdθ
(

, (A.9)

Key assumption. Using the Savage axioms, the Bayesian update can be shown to be the

rational way to make a decision when the guessed parametric family tf0px; θq : θ P Θu contains

the true data model fpxq. However, this is a very stringent requirement that is difficult to meet

in practice. We prefer to operate under more realistic conditions, which allows for f0px; θq to

be misspecified.

Sharp Bayes. What if the analysts’ a priori chosen family tf0p¨; θq : θ P Θu does not

contain the actual data generating model fpxq? It is well known that Bayes’ update exhibits

undesirable characteristics under model misspecification.
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Definition 6 (Generalized d-posteriors). Define the following divergence-based generalized

posterior density function

πpθ|xq 9 πpθq exp
␣

´ IψpF, F0p¨; θqq
(

(A.10)

where IψpF, F0p¨; θqq is the Csiszár class of divergence measure between the true data generator

f and the assumed misspecified class f0p¨; θq. We refer to (A.10) as d-posterior, because we

can rewrite it using Eq. (16) as

πpθ|xq 9 πpθq exp
␣

´

ż

ψ ˝ dθ
(

. (A.11)

whose sample estimate is given by

rπpθ|xq 9 πpθq exp
␣

´

ż

ψ ˝ rdθ
(

. (A.12)

In a remarkable result, Bissiri et al. (2016)28 showed that (A.12) provides a valid coherent rule

for revising prior beliefs about the parameters of a model that is misspecified. Sharp-Bayes

is the name given to this density-sharpening-based generalized Bayes update rule.

Remark 10 (The key idea). The information in the observed data x1, . . . , xn is connected

with the parameter of interest θ via functionals of the sharpening function rdθ, instead of the

conventional likelihood function, whose precise probability form is never known in practice.

Robust Bayes. For outlier-resistant robust Bayesian analysis choose total variation diver-

gence, a special case of Csiszár class with ψpxq “ |x ´ 1| in (A.12)

rπpθ|xq 9 πpθq exp
␣

´
ş

|rdθ ´ 1|
(

. (A.13)

Another particularly useful class of measures for robust Bayesian analysis is Rényi α-divergence,

28After some algebraic manipulation, it is not difficult to show that the main result of Bissiri et al. is
equivalent to (A.12).

S6



defined as

RαpF, F0q “
1

αp1 ´ αq

´

1 ´
ş

pf{f0q
α dF0

¯

, α P R\t0, 1u. (A.14)

It is a robust discrepancy measure between f and the imperfect f0 whose nonparametric

estimation can be done by expressing it as a functional of the sharpening function:

Rαp rF , F0p¨; θqq “
1

αp1 ´ αq

´

1 ´
ş

rdαθ

¯

, α P R\t0, 1u.

The following is the associated posterior belief update rule:

rπpθ|xq 9 πpθq exp
!

´
1

αp1 ´ αq
p1 ´

ş

rdαθ q

)

(A.15)

The value of α P r0.50, 0.75s is commonly used to provide good robustness protection against

outliers without losing too much efficiency.

Two major conclusions:

(1) Knowing the ‘gap’ between the sample distribution and the true data generator (as cap-

tured by rdθ) is sufficient to produce posterior beliefs, obviating the need to know the exact

probabilistic form of the true likelihood function, which decision-makers almost never know

in real-world scenarios.

(2) The fundamental object of statistical inference is not the guessed misspecified parametric

model f0p¨; θq nor the unknown f , but the ‘gap’ between them, dθ.

A7. Addressing Prior misspecification

The information-theoretic generalized Bayes rule, presented in the previous note, is still not

fully satisfactory because it is rigidly based on assumed subjective prior πpθq.29 Thus it is crit-

ical to investigate the robustness of statistical decisions in a reasonable neighborhood around

the presumed prior, which can be operationalized through the density sharpening principle;

29For a more detailed account of “subjective” probability theory see the classic book by De Finetti (1975)
and also Lad (1996).
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see, for example, Mukhopadhyay and Fletcher (2018). Instead of making critical decisions

based solely on analysts’ vague subjective specifications, this allows for prior misspecification.

Notes A6 and A7 showcase how concept density-sharpening principles can unify both the

classical and the most advanced versions of Bayesian inference using common terminology

and notation – a novel contribution in and of itself.
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